CHRISTIAN **HOWARD**

EDUCATION

University of Illinois @ Urbana-Champaign

PhD Computer Science	Interests: Theoretical Computer Science, Artificial Intelligence, Scientific Computing
	GPA : 3.89/4.0
	Date: 2019 - Current
MS Computer Science	Interests: Theoretical Computer Science, Artificial Intelligence, Scientific Computing
	GPA : 3.7/4.0
	Date: 2017 - 2019
BS Aerospace Engineering	Interests: Robotics, Scientific Computing, Controls, Fluid Dynamics
	Date: 2010 - 2014

EXPERIENCE

GNC Systems Engineer II

Research Assistant

University of Illinois @ U-C

- Working under Prof Jeff Erickson and Prof Bob Haber in Computational Geometry with both a theoretical and High Performance Computing (HPC) component
- Developed distributed spacetime meshing algorithms

Raytheon Missile Systems

- Worked with a Secret Clearance in the Guidance, Navigation, and Control (GNC) department building algorithms for precision weapon systems
- Developed an automated, black box, distributed Bayesian Filter building framework that was used to create missile

NASA JPL/Caltech

- Developed Real-Time Homography-based algorithm in C++ to track a landing location in a limited texture environment
- Built filtering algorithms to reduce noisy features fed into a RANS-based algorithm to estimate the Homography

using template metaprogramming techniques in modern C++ and MPI, generalizing algorithms for stratified spaces Developed state machine model to arrive at modular MPI +

Aug 2017 - Current

Jun 2014 - Aug 2017

Jun 2013 - Sep 2013

pthread parallel architecture for meshing + physics code

Kalman Filters with performance superior to human tuned filters in 0.5% of the time a human engineer requires

- Developed adaptive algorithm for estimating Launch Acceptability Regions that reduced run-time by \geq 70%
- Developed a recursive 3-D triangulation algorithm to estimate relative distance to the desired landing location being tracked by the Homography tracker
- Slides at: https://github.com/choward1491/JPL_Project

PRESENTATIONS

Robotics Group - Computer Vision Intern

University of Illinois @ U-C

CS 598 Project Presentation

CS 598 Project Presentation

Presented on the theoretical aspects of the CoveringLSH data structure and discussed applications for real world

University of Illinois @ U-C

Presented about Deep Learning Theory optimization paper showcasing global optimization result as number of Conference Talk

USNCCM15

Presented at the 15th U.S. National Congress on Computational Mechanics in Austin, TX about meshing algorithms used in computational mechanics

University of Illinois @ U-C

Presented results of a set of classification algorithms applied to dimensionally reduced fMRI data associated with patients with and without depression

University of Illinois @ U-C

Presented primary mathematical work done in a paper on the Decoupled Potential Integral Equations and using QBX problems along with comparisons to the traditional LSH data structure.

weights becomes the square of the dataset size.

July 2019

Dec 2017

Specifically discussed my work in spacetime meshing algorithms for hyperbolic PDEs and generalizations for multidimensional manifold situations

CS 598 PS Poster Presentation

Results showed high prediction performance of people with or without depression given fMRI data

Dec 2017 CS 598 APK Project Presentation

to solve the system of integral equations discussed

Q github.com/choward1491

christianjhoward.me

Dec 2019

Dec 2019

PROJECTS

christianjhoward.me

Reinforcement Learning with RKHS - Final Project

• Looked at a collection of papers and formalized a measure theoretic perspective on the work in those papers discussing the use of Reproducing Kernel Hilbert Spaces to construct efficient Approximate Dynamic Programming

Adversarial Examples - Final Project

 Formalized a new optimization technique for creating adversarial examples and implemented a study to compare with a simple baseline approach for attacks against generative models, such as variational autoencoders

Distributed Artificial Intelligence Software

 A personal project to build a C++ library that implements a variety of Artificial Intelligence techniques, particularly in Machine Learning, that benefit from distributed computing

Decoupled Potential Integral Equations

• Worked with **Prof Andreas Kloeckner** in CS 598 and an Independent Study to build a computational physics model based on the Decoupled Potential Integral Equations to allow for robust solutions to the Maxwell Equations

Depression Identification from fMRI Data

• As a part of **Prof Paris Smaragdis**' special topics course on Machine Learning for Signal Processing, worked with a team to build classifiers using dense fMRI datasets that

Q-Learning C++ Framework

• Developed a Q-Learning framework in C++ using metaprogramming techniques and compile-time optimizations

Constraint Satisfaction Problem C++ Framework

 Developed a Constraint Satisfaction Problem (CSP) framework in C++ using metaprogramming techniques

α-β Agent C++ Framework

- Developed a framework for building $\alpha\text{-}\beta$ pruning based agents to search minimax trees

Distributed Euler Equation Solver

• As part of an independent study with **Prof Dan Bodony**, built a distributed code in C and MPI to solve the Euler Equations using the Finite Volume method

Spacetime Discontinuous Galerkin Solver

- As a part of **Prof Bob Haber's** course on advanced finite element methods, a C++ code was written that used the Spacetime Discontinuous Galerkin method
- The software was written to solve a system of 1D hyperbolic partial differential equations

Computer Vision for Aerial Tracking

• As a part of an independent study with **Prof Soon-Jo Chung**, worked on computer vision algorithms to allow for aerial tracking of multiple targets algorithms for Reinforcement Learning problems

Worked out a variety of proofs using an integral operator approach and derived convergence properties, with high probability, in the infinite dimensional RKHS case

Spring 2019

Spring 2019

• The new technique used a second order Taylor expansion to approximate behavior of generative model around some input and would solve a quadratic program on this simpler model to construct an adversarial example

Aug 2018 - Current

 This project is a fun way to test ideas that can benefit from heterogenous parallel programming techniques, such as mixing MPI with OpenMP and OpenCL

Aug 2017 - May 2018

 Implemented the model as an extension to Andreas' pytential Python package to take advantage of his GPGPU and Quadrature by Expansion (QBX) infrastructure

Aug 2017 - Dec 2017

could allow us to predict depression. A report and poster were made for the project.

Aug 2017 - Dec 2017

Applied framework to solving various classical problems, such as building an intelligent agent for playing Pong

Aug 2017 - Dec 2017

Applied framework to solve Flow Free game

Aug 2017 - Dec 2017

Applied framework to play Breakthrough game with a variety of custome heuristics to beat AI opponents

Jan 2013 - May 2013

• The software was used to model a shocktube problem and a corresponding report was written to discuss the results

Jan 2013 - May 2013

- The software was used to perform an hp-convergence study using error estimates and then produced results to show a hyperbolic PDE converging to the parabolic limit
- Results made into report with necessary theoretical work

Jan 2013 - May 2013

• The code was written with OpenCV and C++ and used homographies and a projective image subtraction technique to identify moving targets in the scene

TEACHING

University of Illinois @ U-C

Worked as a grader in AE 352 Aerospace Dynamical Systems. Graded homeworks revolving around topics of kinematics, dynamics, perturbation theory, and more.

Sigma Gamma Tau Aerospace Honors Society

Grader and Teaching Assistant

Aug 2013 - May 2014

Worked as a grader and TA for AE 370 Aerospace • Numerical Methods, grading and holding office hours to help students in areas of numerical analysis and coding.

PROFESSIONAL ORGANIZATIONS			
SIAM	ACM	IEEE	
	AWARDS		
UIUC James Scholar	Computational Science & Engineering Undergrad A		

- Award Computational Science & Engineering Graduate Certificate
 - Raytheon GNC Individual Award
 - Raytheon Griffin Team Award x 2
- **Programming Languages**
- Intermediate to Expert in Modern C++
- Intermediate in C
- Intermediate in Python

Eagle Scout Award

- Intermediate in Swift
- Intermediate Objective-C